Grüne Kraftstoffe

Kompressionszündung regenerativer Kraftstoffe

(Drittmittelfinanzierte Gruppenförderung – Teilprojekt)

Titel des Gesamtprojektes: Injection, mixing, and autoignition of e-fuels for CI engines
Projektleitung: ,
Projektbeteiligte:
Projektstart: 1. Juni 2020
Projektende: 31. Mai 2022
Akronym: eSpray
Mittelgeber: Bundesministerium für Wirtschaft und Technologie (BMWi)

Abstract:

One part of sustainable future mobility will be e-fuels synthesized using regenerative energy. They provide chemical energy storage and are an important step on the way to controlled, clean, and efficient combustion. However, to convert them back into mechanical power, their physical-chemical behavior in the internal combustion engine needs to be understood and condensed into simulation tools for design. At the same time, certain classes of e-fuels promise to be much more conducive to clean and efficient engine combustion. The target of this project are oxygenated e-fuels for compression-ignition engines.
The project goal is to acquire a better understanding of the spray atomization and ignition of oxygenated e-fuels. Starting from a reference fuel that represents current diesel fuels, the proposed project will focus on oxygenated e-fuels and derived blends. With an array of experimental techniques, the species distribution and temperature field in free jets will be measured quantitatively. CFD simulations and chemical mechanism reduction are used to complement the experimental results. Experiments and simulation in an optically accessible engine then are used to tranfer these transfer to the much more complex boundary conditions of a running engine. Each project partner will perform experiments with the same injectors and boundary conditions, and will first use simple optical techniques to make sure that indeed the spray behaves as in the other laboratories. Based on this common experiment, each partner then contributes additional physical insight with the advanced optical diagnostics or simulation that are the specialty expertise of that research group (e.g., laser-induced fluorescence, Rayleigh and Raman scattering), such that a very complete picture of spray, mixing, and ignition can be assembled.
The research network consists of institutes with a expertise in combustion research using optical diagnostics and multidimensional simulations. The Institute of Engineering Thermodynamics at Friedrich-Alexander University (FAU/GER), the Combustion Research Facility at Sandia National Laboratories (SANDIA/USA), and the Institute for Combustion and Gas Dynamics at the University of Duisburg-Essen (UDE/GER) all will measure the temperature and species distribution in the fuel jet, but each with different optical methods to minimize overall experimental uncertainties. They will also image several indicators of cold-stage and hot-stage ignition. The Department of Mechanical Engineering at Shanghai Jiao Tong University (SJTU/CHN) will derive chemical kinetic models as an input for simulations at the Institute of Powertrains and Automotive Technology at Vienna University of Technology (TUW/AUT). Their CFD simulation will be validated against the experiment, but will also provide additional information that is not accessible by experiments. The project will be guided by an advisory board from industry with representatives from both SMEs and larger companies.
The main expected result is the promotion of innovations in the field of renewable-energy storage. Such innovations will create additional demand in chemical process engineering, catalysis, and process equipment for synthetic fuel design and production. The experimental and numerical methods developed in the proposed research project will help the R&D in high-tech companies specialized in measurement technologies, optical systems, and simulation of reactive flows. In these areas, major developments and market contributions are provided by small and medium size enterprises (SME).

Gemischbildung und Verbrennung von Alkoholen und anderer biogener Kraftstoffe in mischungskontrollierten Brennverfahren

(Drittmittelfinanzierte Einzelförderung)

Projektleitung: ,
Projektstart: 1. Oktober 2020
Projektende: 31. März 2023
Mittelgeber: Bundesministerium für Ernährung und Landwirtschaft (BMEL)

Abstract:

Die erste Projektphase zuBioethanol-haltigen Dieselkraftstoffen zeigte, dass die Luftbeimischung zuunter Motorbedingungen injiziertem Kraftstoff als unabhängig von seiner Zusammensetzungbetrachtet werden kann. Für verschiedene Substanzen resultieren in derstationären Phase lokal gleiche Kraftstoff-Luft-Massenverhältnisse, die durchdas Einspritzsystem gezielt eingestellt werden können. Ein Kraftstoffeinflusskommt erst beim Übergang von physikalischer Gemischbildung zu chemischerVerbrennung zu tragen. Charakteristika wie ein (Biokraftstoff-typischer)Sauerstoffgehalt führen zu magereren Gemischen. Dies erlaubt bei Auswahl einesalternativen Stoffs die Fokussierung auf chemische Eigenschaften.Problemstellungen der Schadstoffemission und endlicher Ressourcen können sosimultan und synergetisch behandelt werden: Durch Verwendung von Biokraftstoffenmit geeigneter chemischer Charakteristik wird der Verbrennungsverlauf gezieltso beeinflusst, dass geringe Emissionen entstehen.

Neben dem Alkohol Ethanol sollen in der beantragten zweiten Projektphase HVO und 1-Octanol untersuchtwerden. Durch Analyse der Mischungshomogenität via Raman-Spektroskopie sollbeurteilt werden, ob ein Kraftstoffeinfluss auf mikroskopischer Ebene besteht.Darauf aufbauend soll die Verbrennungsvorgang alternativer Kraftstoffe inEinspritzkammer, Rapid Compression Machine und Einzylindermotor analysiert und dieAnwendungsnähe sukzessive maximiert werden. Ziel ist es Möglichkeiten undGrenzen einer optimalen Verbrennungsführung durch alternative Kraftstoffe füreinen oder wenige Betriebspunkt(e) im realen Anwendungsfall aufzuzeigen. UmErkenntnisse direkt nutzbar zu machen und den Transfer zwischen denPrüfstandssystemen zu optimierten, erfolgt ein stetiger Übertrag in dienumerische Simulation. Hierzu erforderliche Stoffdaten werden projektimmanent viaRaman-Spektroskopie bestimmt und geben eine aktuell benötigte Datenbasis überdas Projekt hinaus.