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Ejectors for efficient Modeling - single chc
» Advantages (compared to active recirculation with a blower): » Stationary, 0-D and single-phase model implemented in Matlab® [1]
Simple structure, low weight, high durability, no power consumer » Calculation of p, T, ¢, a, Ma and RH at each specified state point
(> maximum increase of the system efficiency ~ 2.8 %) N
* Challenges: " Modeling is indispensable to gain a basic |
PaSSive deVice with a ﬁxed geometry, W|de Mass ﬂOW range Of > understanding of the thermodynamic processes
the PEMFC, recirculation of a mUIti'COmponent mixture _ IN the ejector and Its Operating behavior y
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Figure 1. Slmpllfled ‘sketch of the anode circuit with passwe‘re(:lrculatlon (left) and the considered single choklng 'ejector (right) [1].
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Figure 2: Simulation results (qualitatively). Dependence of the ejector outlet pressure on the temperature of the fresh hydrogen (left), the
primary nozzle throat diameter (middle) and the stoichiometric factor of hydrogen (right) [1].

/VVhat do we need to measure? N
 Pressure
 Mass flow rate
 Temperature

Figure 3:
Set up of the test bench
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Conclusion

Experimental validation:

* Thermodynamic analysis: Achievable pressure rise, required throat
length

Simulation model:

 Calculation of specific operating points = Determination of the
operating range of the PEMFC In which the ejector can be used

» Sensitivity analysis: Potentials and limitations for the ejector operation

 Determination of suitable calibration values for the simulation model

- Aim: Design tool for ejectors by combining modeling and experiments
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