

On the Anode Exhaust Gas Recirculation of PEM Fuel Cells using passive Ejectors

Diffuser

Friedrich-Alexander-Universität **Technische Fakultät**

ModVal 2024

Nicklas Lindacher, Lukas Weiß, Sebastian Rieß, Michael Wensing

Ejectors for efficient FC-Systems

• <u>Advantages</u> (compared to active recirculation with a blower): Simple structure, low weight, high durability, no power consumer $(\rightarrow \text{ maximum increase of the system efficiency} \sim 2.8 \%)$

• Challenges:

Passive device with a fixed geometry, wide mass flow range of the PEMFC, recirculation of a multi-component mixture

nozzle

Modeling - single choking ejector

- Stationary, 0-D and single-phase model implemented in Matlab[®] [1]
- Calculation of p, T, c, a, Ma and RH at each specified state point

Modeling is indispensable to gain a basic understanding of the thermodynamic processes in the ejector and its operating behavior

-Throat (A = const.) Suction chamber-

Figure 2: Simulation results (qualitatively): Dependence of the ejector outlet pressure on the temperature of the fresh hydrogen (left), the primary nozzle throat diameter (middle) and the stoichiometric factor of hydrogen (right) [1].

Optically accessible ejector for experimental validation

What do we need to measure?

- Pressure \bullet
- Mass flow rate
- Temperature \bullet
- RH \bullet

Optical accessibility for in situ measurements:

- Structure of the primary jet behind the nozzle outlet
- Mixing of primary and secondary flow
- Possible condensation effects

Conclusions & Outlook

Experimental validation: Simulation model:

• Calculation of specific operating points \rightarrow Determination of the operating range of the PEMFC in which the ejector can be used

• Sensitivity analysis: Potentials and limitations for the ejector operation

• Thermodynamic analysis: Achievable pressure rise, required throat length

Determination of suitable calibration values for the simulation model

 \rightarrow Aim: Design tool for ejectors by combining modeling and experiments

Literature

[1] Lindacher N, et al. *Development of an Ejector Model for* PEMFC Systems. Submitted to Fuel Cells : From Fundamentals to Systems. Paper is still in review; 2024.

Acknowledgements

This work was carried out as part of the FCS-HD project, which is funded by the German Federal Ministry of Digital and Transport as part of the National Hydrogen and Fuel Cell Technology Innovation Programme. The funding directive is coordinated by NOW GmbH and implemented by Project Management Jülich (PtJ).

