How ejectors increase efficiency

- Operation of PEMFCs with $\lambda_{H_2} > 1$ requires a recirculation of the unconsumed hydrogen to achieve high fuel utilization efficiencies [1]
- Substituting active recirculation with a blower (Figure 1, A) by passive recirculation with an ejector (Figure 1, B) saves electrical power \rightarrow the system efficiency increases

B Active recirculation Passive recirculation (humid) Maximum increase of the system efficiency if only Dry Hydrogen Hydrogen hydrogen is recirculated: Blower $\eta_{increase} = \frac{(\lambda_{H_2} - 1) \cdot \frac{\kappa}{\kappa - 1} \cdot \frac{R_m}{M_{H_2}} \cdot (T_2 - T_1)}{H_u} \approx \begin{cases} 0,12 \% @ \lambda_{H_2} = 1,5\\ 2,7 \% @ \lambda_{H_2} = 12 \end{cases}$ Cathode Anode Cathode Anode \rightarrow Dependent on the choice of λ_{H_2} Purge valve Purge valve Water Water separator separator Liquid Liquid water water

Figure 1: Schematics of the anode circuit: Active recirculation (A) vs. passive recirculation (B)

Model setup and results

- Thermodynamic analysis of a single choking ejector with convergent primary nozzle \rightarrow see Figure 2
- Implementation of a stationary, 0-D and single-phase model in Matlab[®]; consideration of a fixed geometry ejector
- Calculation of pressure, temperature, velocities, relative humidity and diameter at each specified state point
- -> The ejector performance in terms of the achievable ejector outlet pressure depends on the operating parameters of the FC stack

on the temperature of the fresh H_2 motivates preheating from for waste heat.

exhaust gas, the model predicts condensation of water.

- Characteristic for this ejector: An increase in λ_{H_2} leads to a decrease in p_a

Figure 2: Simplified sketch of the single choking ejector (according to [5,6,11]). Inserted are the specified state points at which the ejector is calculated. Relevant simulation results are highlighted in orange.

Initial values used for the sensitivity analysis

RH

 Λ_{H_2}

Parameter	Value	Parameter	Value
T_0	300,15 <i>K</i>	T_s	353,15 <i>K</i>
RH _s	15 %	p_s	2,3 bar
\dot{m}_{N_2}	$10\frac{g}{s}$	λ_{H_2}	2
i	$1,3\frac{A}{cm^2}$	d_e	3,4 <i>mm</i>
A _{cell}	300 cm ²	$\eta_{s,PNZ}$	90 %
N _{cell}	400	p_a	2,65 bar

Changes of state:

- $0 \rightarrow e$: Reversible adiabatic accelerated flow of the fresh H_2
- $s \rightarrow 3$: Reversible adiabatic accelerated flow of the anode exhaust gas (expansion to the pressure at state point e)

EFCF 2023

- $e + 3 \rightarrow 5$: Adiabatic mixing of primary and secondary flows
- $5 \rightarrow$ a: Reversible adiabatic decelerated flow

Consideration of flow losses by isentropic efficiencies

Figure 3: Sensitivity analysis: Percentage change of p_a at percentage change of different parameter values

Outlook

- Experimental validation of the simulation model on optically accessible ejectors \rightarrow Integration of the experimental results in the model to obtain quantitatively exact simulation results
- Consideration of effects of liquid water in the ejector
- Identification of an ejector geometry with good technical feasibility and an suitable operating strategy